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Abstract. A generalised Sklyanin algebra is studied. The finite-dimensional representations 
and the centre of this algebra are given with the help of the so-called fusion procedure in 
this paper. 

1. Introduction 

The quantum Yang-Baxter equation (QYBE) was first discovered by Yang [ l ]  in the 
study of a one-dimensional many-body system of spin-; fermions interacting by a 
two-body delta potential and then discovered by Baxter [2] in the study of a zero-field 
eight-vertex model. A host of investigations revealed that, for finding the solution of 
integrable models in statistical mechanics and field theory [3-161, the QYBE is a 
fundamental mathematical relation. By common law we could write the QYBE as 

R ' 2 ( u ) R ' 3 ( u + u ) R 2 3 ( u )  = R 2 3 ( ~ ) R 1 3 ( u + u ) R 1 2 ( u )  (1) 

where U and U are the spectral parameters. The R " ( u )  is a linear operator in the tensor 
product of three linear spaces VI23 = VI@ V2@ V, and signifies the operator R ( u )  on 
space V,@ V,, acting as the identity on the third space, i.e. R I 2 ( u )  = R(u)@l l .  Recently 
there is also renewed interest in the QYBE because of its connection with some algebraic 
theories such as the Sklyanin algebra [ 17,181, quantum group [ 19-22] and briad group 

In the study of the QYBE the so-called fusion procedure was developed to generate 
new group-invariant solutions of the Qyee-fusion solutions from the known rational 
solution in [27] and from the Baxter eight-vertex model [2] the so-called Sklyanin 
algebra was constructed in [17,18]. Then in [28] from the Belavin Z, xZ, symmetric 
model [29], which is a generalisation of the Baxter eight-vertex model [2], the gen- 
eralised Sklyanin algebras was raised and the fusion procedure of the elliptic function 
solution of the QYBE was constructed, and the connection of the finite-dimensional 
representations of the generalised Sklyanin algebra with the fusion solutions was also 
pointed out. A detailed derivation of the generalised Sklyanin algebra was given in [30]. 

' h e  purpose of this paper is to show further work on the generalised Sklyanin 
algebra. In the next section we review the Belavin Z, x h, symmetric model and the 
generalised Sklyanin algebra. Then we calculate explicitly the representations of the 
generalised Sklyanin algebra with the help of the fusion procedure in section 3. In 
fact, this calculation makes a show of the link of the generalised Sklyanin algebra with 
the fusion procedure. In section 4 we find the centre of this algebra still using the 
fusion procedure. In the final section we briefly discuss our results. 

[23-261. 
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2. The Belavin B ,  xZ, symmetric model and the generalised Sklyanin algebra 

The Belavin Z, x Z, symmetric model is the elliptic function solution of the Q Y B E  (1) 
and it has two equivalent forms [29,31]: 

R ( u ) = x  s ( ' ) y  E d !  ( 2 0 )  

=exp(-.irud=i) w b ( u ) z b @ z i '  (3a)  

where E, and I b  are the n x n matrices, respectively, with the matrix elements 

(6J),, = s,, 4, 
and 

( z b ) t ,  = wbzJur,j+bl 

w = exp(d=i2.ir/ n). 

The subscript b = ( b l ,  b,) belongs in the group Z, xZ,, where Z, is the group of 
integers P modulo n. The summations in (2a)  and (3a)  are, respectively, over i, j ,  i ' ,  
j '  and over b , ,  b2 from 0 to n -1. The coefficient S(u):, '  is called the Boltzmann 
weight and has the parametrisation [31] 

which can be obtained from the Belavin parametrisation [29] 

They are all represented in terms of the Jacobi theta function: 
- -  

(U, T)= E e x p ( - . i r [ ( m + ~ ) ~ T + 2 ( m + a ) ( u + b ) ] } .  'LEI m s Z  

The parameter w is a constant. 
The Belavin Z, x Z, symmetric model is the generalisation of the Baxter eight-vertex 

model. The diagonalisation of the transfer matrices for the Baxter eight-vertex model 
has been given in [4,7] and for the Belavin Z, x Z, symmetric model it has been given 
in [8,32]. The fusion procedure for these models has also been studied in [28,33-351. 
Notably, since the so-called Sklyanin algebra was constructed from the Baxter eight- 
vertex model in [ 17, 181, the generalised Sklyanin algebra has been obtained recently 
from the Belavin Z, x E, symmetric model in [28,30]. In the following we describe 
briefly the derivation of the generalised Sklyanin algebra [30j. 
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Introducing operators Ah E V, and 

L(U)= w b ( u ) I h @ A b  
b e Z x Z  

( 4 )  

and using the solution ( 3 )  of the QYBE ( l ) ,  we construct the following relation: 

R"(u)L"(u+u)L* ' (u )  = L 2 3 ( u ) L ' 3 ( u + u ) R " ( u ) .  ( 5 )  

Using the relation 

Tr IaZc' = nsab 

from ( 5 )  we have 

where the coefficient 

can be represented as 

using an elementary complex analysis argument [ 3 6 ] .  The constant C o b c  is independent 
of the spectral parameters U and U and is only dependent on the parameters w and T. 
It can be calculated by considering the ratio of Fabc to & ( U ,  U). Here we do not go 
further into this and the detailed calculation has been given in [30 ] .  Finally, from ( 6 )  
we have 

c C a b c A a + b - c A c  = 0 for any a, b, c E Z, x Z,. ( 7 )  
c a z x z  

Equations ( 7 )  are independent of the spectral parameters U and U and define an 
algebra. This algebra is just the Sklyanin algebra [ 17, 181 for the special case of n = 2. 
Hence equations ( 7 )  define the generalisation of the Sklyanin algebra-the generalised 
Sklyanin algebra. 

3. Fusion procedure and the representations of the generalised Sklyanin algebra 

The fusion procedure of the Belavin Z, x Z, symmetric model was systematically 
studied in [28,33-35,371. In this section we would like to find some finite-dimensional 
representations of the generalised Sklyanin algebra explicitly using the fusion pro- 
cedure. 

= V, = C "  and PN = VI@. . .@ V,. Take R i J ( u ) ,  
R '((U) and Rr7(u)  as, respectively, the operators R ( u )  acting on V , @  V,, vt@ V, and 
q@ q. Then we define the following operator acting on v@ V@" using (2): 

Let N be a positive integer, 

R , ( u ) = R ' ~ ( u ) R ' ' ( u + w ) .  . .  ~ " ( u + ( ~ - i ) w )  ( s a )  
and 

Ro, ( 1 1 )  = Pg RN (11 )Pg ( 8 b )  
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where PN denotes the projector on the space of symmetric tensors and antisymmetric 
tensors in P N ,  respectively, for (+ = + and (+ = -. Here we take (P; )?  = P;. 

It has been shown in [35] that R U N ( u )  satisfies the following YBE: 

R”(u)Rt ; ‘ , (u+u)R’d , (u )  = R:N(u)R:N(U+ U ) R ’ * ( U ) .  ( 9 )  

This relation is similar to ( 5 )  in form. This shows that R O N ( u )  should be the finite- 
dimensional representation of the operator L( U )  in space V @  pN. Therefore we can 
obtain the finite-dimensional representation of the algebraic elements Ab from the 
fusion solution R U N (  U). We may write 

where the operators FEN( U )  E pN are dependent on the spectral parameter U. Thus 
far our task is to find it explicitly. 

Using (2) for any s = (s, , s2) E Z x Z we have 

Inserting this into (8), and  with the help of the representation ( lo) ,  we obtain 

{ [ ( ; ( N - l ) w + ~ + l  
F ;” (u+T)=exp  - N n a  T+2 U+-+ 

2 

F;N(U+l)=WblF;N(U). 

Since R ( u )  and F E N ( u )  are entire, these transformation properties show that the 
operator FgN has N zeros within the parallelogram A, = 1 + T of the complex plan, 
and  if up (0 s is N - 1) are the zeros, they satisfy 

These can easily be obtained from an  argument of the elementary complex analysis [ 3 6 ] .  
Since equation (2) gives [31,35] 

R (  - w )  = something x P; 

and 

R (  w )  = P: x something 

it is obvious from (8) that we can locate the first N - 1 zeros of the F z N (  U )  as follows: 

U: = -iw i = 1,2, . . . , N - 1 

and  

U ;  = -iw i = O , l ,  . . . ,  N - 2 .  

From the above sum of zeros we conclude the remaining zero must be 

N 1  
n n  

U: = - - w - - ( b2 + b, T )  if a = +  

and 
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Define 

Wb[u + ( N  - l )w/n]  

w,[ U + ( N  - l ) (w/n  + w)]  
WZN( U )  = 

i f u = +  

i f u =  - 

then the product HvN(u) WZN(u)  has the same zeros (in U )  as F Z N ( u )  and the same 
transformation properties as F:"( U). Thus 

F Z k ( u )  = HvN(u) WZ"(u)AgN (12) 

where we have introduced the operators A,""€ V". They are independent of the 
spectral parameter U. In fact, these A i N ,  b E Z, x E,,  N = any positive integers, are 
just the finite-dimensional representations of the generalised Sklyanin algebraic ele- 
ments Ab ( b  E Z, x Z,) in (7 ) .  We use the notation rep(u, N) to denote the representa- 
tion with A:". This can be obviously seen from inserting (12) in (10) and from (9) 
we have the same commutation relation for A:" as (7)  for Ab. To determine A:" for 
any N >  1 we consider R v N ( u ) .  From (8) we have 

(13a) R~"(U) = P : R ~ ~ ( U ) R & ~ ) ( U +  I 2.  M W ) P ;  

or 

R ~ ~ ( u )  = P " , ~ ~ ~ ; ~ ~ ' ( ~ ) R ~ " ( u + ( N - ~ ) ~ ) P ; .  (13b) 
Inserting (3)  and (10)-(12) in (13a), we can obtain 

A i N  = u:(N - 1 )  c W,(w+ (N - ~ ) ~ / ~ ) W ' ~ ~ - ' ~ ' ' I ~ + N I ~ ~ ~ ~ A ~ ( " - ' ) P ~  (14a) 

(14b) u ; ( N - l ) =  [ e x p [ G i ~ ( ~ - ~ ) w ] @  [;I( W , T ) W ~  (; - ( N - I )  )I-' . 

Inserting the same equations in (13b) ,  we have 

A i N  = U;( N- 1 )  WC(-w + ( N - 2 ) w / n ) w C 2 ( b l - C l ) P , A , ( N - ' )  OI,!,P, (14c) 

where the summations are c = ( c l ,  c2) over E ,  x E , .  The factor Wb(u)  is given in (36),  
and 

for U = * .  (14e) A:' = 1;' 

Equations (14) give a set of recurrence relations for determining A:". Thus we have 
the final results for any N 3  1 
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and 

They give the representation rep(cr, N )  of the generalised Sklyanin algebra. Since I ; '  
are the n x n matrices, Ahh: becomes zero if N > n and a 1 x 1 matrix ( a  non-matrix 
function) if N = n in equation (15b). In addition, the recurrence relation for AXN 
defines the following mapping: 

A:: rep(a,  N)+rep(cr ,  N + 1 ) .  

4. Fusion procedure and the algebraic centre 

In this section we find the centre of the generalised Sklyanin algebra by using the 
fusion procedure. 

Define an  operator acting on  VaN for any N 5 1: 

D ~ ~ ( u ) = P , R ~ ~ ( u + ( I - ~ ) ~ ) .  . . R:~(U-WW)R;&(U)P; (16) 
where R L N ( u )  acting on  q @  VI =_ V o  VsN is given in (8). P, is a projector on  the 
space of antisymmetric tensors PN. It has been shown in [35] that we have the 
following YBE:  

RiZ,(U)R:;(U+ U)D:N(u) = DZd,(u)Rf;l ,(uS u)R!: , (u) .  (17) 
Now we will show that the operator DUN ( U )  is the centre element of the representa- 

tion rep(a,  N )  of the generalised Sklyanin algebra. To show this we must study the 
operator R ! ~ , ( u ) .  

Using (2) for s = ( sl ,  s2) E E x E we have 
R ( U + sI T + s2) = P( U ) n  o I ; '  R ( U ) n  o I, 

= P ( u ) i s o u R ( u ) i ; l @ n  
where 1 is a unit matrix. The coefficient P ( u )  is a factor depending on the spectral 
parameter U and is not important in our further discussion. From this transformation 
and  (8) we have 

N - I 
R - . ( u + s , T + s ~ ) =  P ( u + i w ) a o U r ' R - , ( u ) n O U ,  

I =o 

U, = I , @ .  . . @ I ,  (4). 
Since the representation Abn is the 1 x 1 matrix, the operator IO U, commutes with 

K,,( U). Therefore the transformation (18) gives 

Moreover, because we have i + j  = i ' + j '  mod n for S(u):; l  and Abn is a 1 x 1 matrix, 
R - , ( u )  is a n x n diagonal matrix. Combining this and  (19) we know that R - , ( u )  
must be product of something and a unit matrix. Thus (17) gives 

R - , ( u )  = i ,@nR- , (u ) i ; l on .  (19) 

[ R t;f, ( U + 2: ) , D :;, ( U ) ] = 0. 
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Using ( lo) ,  (12) and 

Tr ZJ;’ = naoh 

we have 

[A:”’, D V N ( u ) I = O  for any b e Z , + Z , .  (20) 

This commutation relation shows that the operator function D V N ( u )  for any complex 
variable U is the centre element of the representation rep(a, N )  of the generalised 
Sklyanin algebra. 

5. A brief discussion 

In the previous section we have constructed the finite-dimensional representations and 
the centre of the generalised Sklyanin algebra. In fact, we have also found the fusion 
solution R V N ( u ) ,  which can be obtained by equations (10)-(12) and (14). But there 
are still some related interesting questions to be studied. 

(i) Is the representation (14), taking the special values of w as a restricted SOS 

model [33], reducible? 
(ii) How many centre elements are there in the generalised Sklyanin algebra? 
(iii) Can we construct the representations with the other symmetries for the gen- 

These, however, have not been studied in this paper, but will be the subject of our 
eralised Sklyanin algebra? 

future study. 
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