Fusion procedure and Sklyanin algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 231147
(http://iopscience.iop.org/0305-4470/23/7/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:03

Please note that terms and conditions apply.

Fusion procedure and Sklyanin algebra

B Y Hou and Y K Zhou
Institute of Modern Physics, Northwest University, Xian 710069, People's Republic of China

Received 16 August 1989

Abstract

A generalised Sklyanin algebra is studied. The finite-dimensional representations and the centre of this algebra are given with the help of the so-called fusion procedure in this paper.

1. Introduction

The quantum Yang-Baxter equation (QYbe) was first discovered by Yang [1] in the study of a one-dimensional many-body system of spin- $\frac{1}{2}$ fermions interacting by a two-body delta potential and then discovered by Baxter [2] in the study of a zero-field eight-vertex model. A host of investigations revealed that, for finding the solution of integrable models in statistical mechanics and field theory [3-16], the QYbe is a fundamental mathematical relation. By common law we could write the QYBE as

$$
\begin{equation*}
R^{12}(u) R^{13}(u+v) R^{23}(v)=R^{23}(v) R^{13}(u+v) R^{12}(u) \tag{1}
\end{equation*}
$$

where u and v are the spectral parameters. The $R^{i j}(u)$ is a linear operator in the tensor product of three linear spaces $V_{123}=V_{1} \otimes V_{2} \otimes V_{3}$ and signifies the operator $R(u)$ on space $V_{i} \otimes V_{j}$, acting as the identity on the third space, i.e. $R^{12}(u)=R(u) \otimes 1$. Recently there is also renewed interest in the QYBE because of its connection with some algebraic theories such as the Sklyanin algebra [17, 18], quantum group [19-22] and briad group [23-26].

In the study of the QYBE the so-called fusion procedure was developed to generate new group-invariant solutions of the QYBE-fusion solutions from the known rational solution in [27] and from the Baxter eight-vertex model [2] the so-called Sklyanin algebra was constructed in [17, 18]. Then in [28] from the Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model [29], which is a generalisation of the Baxter eight-vertex model [2], the generalised Sklyanin algebras was raised and the fusion procedure of the elliptic function solution of the QYBE was constructed, and the connection of the finite-dimensional representations of the generalised Sklyanin algebra with the fusion solutions was also pointed out. A detailed derivation of the generalised Sklyanin algebra was given in [30].

The purpose of this paper is to show further work on the generalised Sklyanin algebra. In the next section we review the Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model and the generalised Sklyanin algebra. Then we calculate explicitly the representations of the generalised Sklyanin algebra with the help of the fusion procedure in section 3. In fact, this calculation makes a show of the link of the generalised Sklyanin algebra with the fusion procedure. In section 4 we find the centre of this algebra still using the fusion procedure. In the final section we briefly discuss our results.

2. The Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model and the generalised Sklyanin algebra

The Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model is the elliptic function solution of the QYBE (1) and it has two equivalent forms [29,31]:

$$
\begin{align*}
R(u) & =\sum S(u)_{i j}^{i j^{\prime}} E_{i i^{\prime}} \otimes E_{j j^{\prime}} \tag{2a}\\
& =\exp (-\pi u \sqrt{-1}) \sum W_{b}(u) I_{b} \otimes I_{b}^{-1} \tag{3a}
\end{align*}
$$

where $E_{i j}$ and I_{b} are the $n \times n$ matrices, respectively, with the matrix elements

$$
\left(E_{i j}\right)_{i^{\prime}}=\delta_{i i^{\prime}} \delta_{j j^{\prime}}
$$

and

$$
\begin{aligned}
& \left(I_{b}\right)_{i j}=\omega^{b_{2 j} J} \sigma_{i, j+b_{1}} \\
& \omega=\exp (\sqrt{-1} 2 \pi / n)
\end{aligned}
$$

The subscript $b=\left(b_{1}, b_{2}\right)$ belongs in the group $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$, where \mathbb{Z}_{n} is the group of integers \mathbb{Z} modulo n. The summations in ($2 a$) and ($3 a$) are, respectively, over i, j, i^{\prime}, j^{\prime} and over b_{1}, b_{2} from 0 to $n-1$. The coefficient $S(u)_{i j}^{\prime^{\prime} j}$ is called the Boltzmann weight and has the parametrisation [31]

$$
\begin{align*}
& S(u)_{i_{j} j^{\prime}}^{i j}=\left\{\begin{array}{l}
n \exp (-\sqrt{-1} \pi u) h(u) \theta\left[\begin{array}{c}
\frac{j-i}{n}+\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](u+w, n \tau) \\
\times\left(\theta\left[\begin{array}{c}
\frac{i^{\prime}-i}{n}+\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](w, n \tau) \theta\left[\begin{array}{c}
\frac{j-i^{\prime}}{n}+\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](u, n \tau)\right)^{-1} \\
0 \\
\text { if } i+j=i^{\prime}+j^{\prime} \bmod n \\
\text { otherwise }
\end{array}\right. \\
& h(u)=\prod_{i=0}^{n-1} \theta\left[\begin{array}{c}
\frac{i}{n}+\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](u, n \tau)\left(\prod_{i=1}^{n-1} \theta\left[\begin{array}{c}
\frac{i}{n}+\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](0, n \tau)\right)^{-1} \tag{2b}
\end{align*}
$$

which can be obtained from the Belavin parametrisation [29]

$$
W_{b}(u)=\theta\left[\begin{array}{l}
b_{1} / n+\frac{1}{2} \tag{3b}\\
b_{2} / n+\frac{1}{2}
\end{array}\right](u+w / n, \tau)\left(\theta\left[\begin{array}{l}
b_{1} / n+\frac{1}{2} \\
b_{2} / n+\frac{1}{2}
\end{array}\right](w / n, \tau)\right)^{-1} .
$$

They are all represented in terms of the Jacobi theta function:

$$
\theta\left[\begin{array}{l}
a \\
b
\end{array}\right](u, \tau)=\sum_{m \in \mathbb{Z}} \exp \left\{\sqrt{-1} \pi\left[(m+a)^{2} \tau+2(m+a)(u+b)\right]\right\} .
$$

The parameter w is a constant.
The Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model is the generalisation of the Baxter eight-vertex model. The diagonalisation of the transfer matrices for the Baxter eight-vertex model has been given in $[4,7]$ and for the Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model it has been given in [8, 32]. The fusion procedure for these models has also been studied in [28, 33-35]. Notably, since the so-called Sklyanin algebra was constructed from the Baxter eightvertex model in [17,18], the generalised Sklyanin algebra has been obtained recently from the Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model in [28,30]. In the following we describe briefly the derivation of the generalised Sklyanin algebra [30].

Introducing operators $A_{b} \in V_{3}$ and

$$
\begin{equation*}
L(u)=\sum_{b \in \mathbb{Z} \times \mathbb{Z}} W_{b}(u) I_{b} \otimes A_{b} \tag{4}
\end{equation*}
$$

and using the solution (3) of the Qybe (1), we construct the following relation:

$$
\begin{equation*}
R^{12}(u) L^{13}(u+v) L^{23}(v)=L^{23}(v) L^{13}(u+v) R^{12}(u) \tag{5}
\end{equation*}
$$

Using the relation

$$
\operatorname{Tr} I_{a} I_{b}^{-1}=n \delta_{a b}
$$

from (5) we have

$$
\begin{equation*}
\sum_{c \in \overline{\mathbb{Z}} \times \mathbb{Z}} F_{a b c}(u, v) \omega^{\left(a_{1}-c_{1}\right)\left(c_{2}-b_{2}\right)} A_{a+b-c} A_{c}=0 \tag{6}
\end{equation*}
$$

where the coefficient
$F_{a b c}(u, v)=W_{c-b}(u) W_{a+b-c}(u+v) W_{c}(v)-W_{a-c}(u) W_{c}(u+v) W_{a+b-c}(v)$
can be represented as

$$
\begin{aligned}
& F_{a b c}(u, v)=C_{a b c} f_{a b}(u, v) \\
& f_{a b}(u, v)=\theta\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](u, \tau) \theta\left[\begin{array}{l}
a_{1} / n+\frac{1}{2} \\
a_{2} / n+\frac{1}{2}
\end{array}\right](u+v+2 w / n, \tau) \theta\left[\begin{array}{l}
b_{1} / n+\frac{1}{2} \\
b_{2} / n+\frac{1}{2}
\end{array}\right](v, \tau)
\end{aligned}
$$

using an elementary complex analysis argument [36]. The constant $C_{a b c}$ is independent of the spectral parameters u and v and is only dependent on the parameters w and τ. It can be calculated by considering the ratio of $F_{a b c}$ to $f_{a b}(u, v)$. Here we do not go further into this and the detailed calculation has been given in [30]. Finally, from (6) we have

$$
\begin{equation*}
\sum_{c \in \mathbb{Z} \times \mathbb{Z}} C_{a b c} A_{a+b-c} A_{c}=0 \quad \text { for any } a, b, c \in \mathbb{Z}_{n} \times \mathbb{Z}_{n} \tag{7}
\end{equation*}
$$

Equations (7) are independent of the spectral parameters u and v and define an algebra. This algebra is just the Sklyanin algebra [17, 18] for the special case of $n=2$. Hence equations (7) define the generalisation of the Sklyanin algebra-the generalised Sklyanin algebra.

3. Fusion procedure and the representations of the generalised Sklyanin algebra

The fusion procedure of the Belavin $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$ symmetric model was systematically studied in [28, 33-35, 37]. In this section we would like to find some finite-dimensional representations of the generalised Sklyanin algebra explicitly using the fusion procedure.

Let N be a positive integer, $\bar{V}_{i}=V_{j}=C^{n}$ and $V^{\otimes N}=V_{1} \otimes \ldots \otimes V_{N}$. Take $R^{i j}(u)$, $R^{i j}(u)$ and $R^{i j}(u)$ as, respectively, the operators $R(u)$ acting on $V_{i} \otimes V_{j}, \bar{V}_{i} \otimes V_{j}$ and $\bar{V}_{i} \otimes \bar{V}_{j}$. Then we define the following operator acting on $\bar{V} \otimes V^{\otimes N}$ using (2):

$$
\begin{equation*}
R_{N}(u)=R^{\overline{1} 1}(u) R^{\overline{1} 2}(u+w) \ldots R^{\overline{1} N}(u+(N-1) w) \tag{8a}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{\sigma N}(u)=P_{N}^{\sigma} R_{N}(u) P_{N}^{\sigma} \tag{8b}
\end{equation*}
$$

where P_{N} denotes the projector on the space of symmetric tensors and antisymmetric tensors in $V^{\otimes N}$, respectively, for $\sigma=+$ and $\sigma=-$. Here we take $\left(P_{N}^{\sigma}\right)^{2}=P_{N}^{\sigma}$.

It has been shown in [35] that $R_{\sigma N}(u)$ satisfies the following Ybe:

$$
\begin{equation*}
R^{12}(u) R_{\sigma N}^{13}(u+v) R_{\sigma N}^{23}(v)=R_{\sigma N}^{23}(v) R_{\sigma N}^{13}(u+v) R^{12}(u) \tag{9}
\end{equation*}
$$

This relation is similar to (5) in form. This shows that $R_{\sigma N}(u)$ should be the finitedimensional representation of the operator $L(u)$ in space $V \otimes V^{\otimes N}$. Therefore we can obtain the finite-dimensional representation of the algebraic elements A_{b} from the fusion solution $R_{\sigma N}(u)$. We may write

$$
\begin{equation*}
R_{\sigma N}(u)=\sum_{b \in \mathbb{Z} \times \mathbb{Z}} I_{b} F_{b}^{\sigma N}(u), \tag{10}
\end{equation*}
$$

where the operators $F_{b}^{\sigma N}(u) \in V^{\otimes N}$ are dependent on the spectral parameter u. Thus far our task is to find it explicitly.

Using (2) for any $s=\left(s_{1}, s_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$ we have
$S\left(u+s_{1} \tau+s_{2}\right)_{i j^{\prime}}^{i j}=\exp \left\{-\sqrt{-1} \pi\left[\left(s_{1}^{2} \tau+2 s_{1}\left(u+\frac{w}{n}+\frac{\tau+1}{2}\right)\right]\right\} \omega^{s_{2}\left(i^{\prime}-i\right)} S(u)_{i j^{i}+s_{1}}^{i j+s_{1}}\right.$.
Inserting this into (8), and with the help of the representation (10), we obtain
$F_{b}^{\sigma N}(u+\tau)=\exp \left\{-N \pi \sqrt{-1}\left[\tau+2\left(u+\frac{w}{n}+\frac{(N-1) w+\tau+1}{2}\right)\right]\right\} \omega^{-b_{2}} F_{b}^{\sigma N}(u)$
$F_{b}^{\sigma N}(u+1)=\omega^{b_{1}} F_{b}^{\sigma N}(u)$.
Since $R(u)$ and $F_{b}^{\sigma N}(u)$ are entire, these transformation properties show that the operator $F_{b}^{\sigma N}$ has N zeros within the parallelogram $\Lambda_{T}=1+\tau$ of the complex plan, and if $u_{i}^{\sigma}(0 \leqslant i \leqslant N-1)$ are the zeros, they satisfy

$$
u_{0}^{\sigma}+\ldots+u_{N-1}^{\sigma}=-N w\left(\frac{1}{n}+\frac{N-1}{2}\right)-\frac{1}{n}\left(b_{2}+b_{1} \tau\right) .
$$

These can easily be obtained from an argument of the elementary complex analysis [36].
Since equation (2) gives [31,35]

$$
R(-w)=\text { something } \times P_{2}^{-}
$$

and

$$
R(w)=P_{2}^{+} \times \text {something }
$$

it is obvious from (8) that we can locate the first $N-1$ zeros of the $F_{b}^{\sigma N}(u)$ as follows:

$$
u_{i}^{+}=-i w \quad i=1,2, \ldots, N-1
$$

and

$$
u_{1}^{-}=-i w \quad i=0,1, \ldots, N-2
$$

From the above sum of zeros we conclude the remaining zero must be

$$
u_{0}^{+}=-\frac{N}{n} w-\frac{1}{n}\left(b_{2}+b_{1} \tau\right) \quad \text { if } \sigma=+
$$

and

$$
u_{N-1}^{-}=-\left(\frac{N}{n}+N-1\right) w-\frac{1}{n}\left(b_{2}+b_{1} \tau\right) \quad \text { if } \sigma=-
$$

Define

$$
\begin{align*}
& H_{\sigma N}(u)= \begin{cases}\exp (-\sqrt{-1} \pi N u) \prod_{i=1}^{N-1} \theta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](u+i w, \tau) & \text { if } \sigma=+ \\
\exp (-\sqrt{-1} \pi N u) \prod_{i=0}^{N-2} \theta\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right](u+i w, \tau) & \text { if } \sigma=-\end{cases} \tag{11a}\\
& W_{b}^{\sigma N}(u)= \begin{cases}W_{b}[u+(N-1) w / n] & \text { if } \sigma=+ \\
W_{b}[u+(N-1)(w / n+w)] & \text { if } \sigma=-\end{cases}
\end{align*}
$$

then the product $H_{\sigma N}(u) W_{b}^{\sigma N}(u)$ has the same zeros (in u) as $F_{b}^{\sigma N}(u)$ and the same transformation properties as $F_{b}^{\sigma N}(u)$. Thus

$$
\begin{equation*}
F_{b}^{\sigma N}(u)=H_{\sigma N}(u) W_{b}^{\sigma N}(u) A_{b}^{\sigma N} \tag{12}
\end{equation*}
$$

where we have introduced the operators $A_{b}^{\sigma N} \in V^{\otimes N}$. They are independent of the spectral parameter u. In fact, these $A_{b}^{\sigma N}, b \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}, N=$ any positive integers, are just the finite-dimensional representations of the generalised Sklyanin algebraic elements $A_{b}\left(b \in \mathbb{Z}_{n} \times \mathbb{Z}_{n}\right)$ in (7). We use the notation $\operatorname{rep}(\sigma, N)$ to denote the representation with $A_{b}^{\sigma N}$. This can be obviously seen from inserting (12) in (10) and from (9) we have the same commutation relation for $A_{b}^{\sigma N}$ as (7) for A_{b}. To determine $A_{b}^{\sigma N}$ for any $N>1$ we consider $R_{\sigma N}(u)$. From (8) we have

$$
\begin{equation*}
R_{\sigma N}(u)=P_{N}^{\sigma} R^{\overline{1} 1}(u) R_{\sigma \mid N-1)}^{\overline{1}, 2 \ldots, M}(u+w) P_{N}^{\sigma} \tag{13a}
\end{equation*}
$$

or

$$
\begin{equation*}
R_{\sigma N}(u)=P_{N}^{\sigma} R_{\sigma(N-1)}^{\overline{1}, 1 \ldots N-1}(u) R^{\overline{1} N}(u+(N-1) w) P_{N}^{\sigma} . \tag{13b}
\end{equation*}
$$

Inserting (3) and (10)-(12) in (13a), we can obtain
$A_{b}^{+N}=u_{b}^{+}(N-1) \sum W_{c}(w+(N-2) w / n) \omega^{\left(b_{2}-c_{2}\right) c_{1}} P_{N}^{+} I_{b-c}^{-1} \otimes A_{c}^{+(N-1)} P_{N}^{+}$
$u_{b}^{+}(N-1)=\left[\exp [\sqrt{-1} \pi(N-1) w] \theta\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right](w, \tau) W_{b}\left(\frac{w}{n}(N-1)\right)\right]^{-1}$.
Inserting the same equations in (13b), we have
$A_{b}^{-N}=u_{b}^{-}(N-1) \sum W_{c}(-w+(N-2) w / n) \omega^{c_{2}\left(b_{1}-c_{1}\right)} P_{N}^{-} A_{c}^{-(N-1)} \otimes I_{b-c}^{-1} P_{N}^{-}$
$u_{b}^{-}(N-1)=\left[\exp [\sqrt{-1} \pi(N-1) w] \theta\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right](-w, \tau) W_{b}\left((N-1) \frac{w}{n}\right)\right]^{-1}$
where the summations are $c=\left(c_{1}, c_{2}\right)$ over $\mathbb{Z}_{n} \times \mathbb{Z}_{n}$. The factor $W_{b}(u)$ is given in (3b), and

$$
\begin{equation*}
A_{b}^{\sigma 1}=I_{b}^{-1} \quad \text { for } \sigma= \pm . \tag{14e}
\end{equation*}
$$

Equations (14) give a set of recurrence relations for determining $A_{b}^{\sigma N}$. Thus we have the final results for any $N \geqslant 1$

$$
\begin{align*}
A_{b^{0}}^{+N}=\sum_{b^{1}} \ldots & \sum_{b^{N-1}}\left(\prod_{i=1}^{N-1}\left\{u_{b^{\prime-1}}^{+-1}(N-i) W_{b^{\prime}}[w+(N-i-1) w / n] \omega^{b_{1}^{2}\left(b_{2}^{\prime-1}-b_{2}^{\prime}\right)}\right\}\right. \\
& \left.\times P_{N}^{+} I_{b^{0}-b^{1}}^{-1} \otimes I_{b^{1}-b^{2}}^{-1} \otimes \ldots \otimes I_{b^{N-1}}^{-1} P_{N}^{+}\right) \tag{15a}
\end{align*}
$$

and

$$
\begin{align*}
& A_{b^{\circ}}^{-N}=\sum_{b^{1}} \ldots \sum_{b^{N-1}}\left(\prod_{i=1}^{N-1}\left\{u_{b^{\prime-1}}(N-i) W_{b^{\prime}}[-w(N-i-1) w / n] \omega^{b_{i}^{\prime} b_{i}^{-1}-b_{i}^{\prime}}\right\}\right. \\
&\left.\times P_{N}^{-} I_{b^{\prime}-1}^{-1} \otimes \ldots \otimes I_{b^{\prime}-b^{2}}^{-1} \otimes I_{b^{\circ}-b^{1}}^{-1} P_{N}^{-}\right) \tag{15b}
\end{align*}
$$

They give the representation $\operatorname{rep}(\sigma, N)$ of the generalised Sklyanin algebra. Since I_{b}^{-1} are the $n \times n$ matrices, A_{b}^{-N} becomes zero if $N>n$ and a 1×1 matrix (a non-matrix function) if $N=n$ in equation (15b). In addition, the recurrence relation for $A_{b}^{\sigma N}$ defines the following mapping:

$$
\Delta_{N}^{\sigma}: \operatorname{rep}(\sigma, N) \rightarrow \operatorname{rep}(\sigma, N+1) .
$$

4. Fusion procedure and the algebraic centre

In this section we find the centre of the generalised Sklyanin algebra by using the fusion procedure.

Define an operator acting on $V^{\otimes N}$ for any $N \geqslant 1$:

$$
\begin{equation*}
D_{\sigma N}(u)=P_{n}^{-} R_{\sigma N}^{\bar{n} 1}(u+(1-n) w) \ldots R_{\sigma N}^{\overline{2} 1}(u-w) R_{\sigma N}^{\overline{1} 1}(u) P_{n}^{-} \tag{16}
\end{equation*}
$$

where $R_{\sigma N}^{\overline{1}}(u)$ acting on $\vec{V}_{i} \otimes V_{1}=V \otimes V^{\otimes N}$ is given in (8). P_{n}^{-}is a projector on the space of antisymmetric tensors $\bar{V}^{\otimes N}$. It has been shown in [35] that we have the following YBE:

$$
\begin{equation*}
R_{-n}^{12}(u) R_{\sigma N}^{13}(u+v) D_{\sigma N}^{23}(v)=D_{\sigma N}^{23}(v) R_{\sigma N}^{13}(u+v) R_{-n}^{12}(u) . \tag{17}
\end{equation*}
$$

Now we will show that the operator $D_{\sigma N}(v)$ is the centre element of the representation $\operatorname{rep}(\sigma, N)$ of the generalised Sklyanin algebra. To show this we must study the operator $R_{-n}^{12}(u)$.

Using (2) for $s=\left(s_{1}, s_{2}\right) \in \mathbb{Z} \times \mathbb{Z}$ we have

$$
\begin{aligned}
R\left(u+s_{1} \tau+s_{2}\right) & =P(u) \mathbb{\rrbracket} \otimes I_{s}^{-1} R(u) \nabla \otimes I_{s} \\
& =P(u) I_{s} \otimes \mathbb{D}(u) I_{s}^{-1} \otimes \mathbb{\rrbracket}
\end{aligned}
$$

where $\mathbb{1}$ is a unit matrix. The coefficient $P(u)$ is a factor depending on the spectral parameter u and is not important in our further discussion. From this transformation and (8) we have

$$
\begin{align*}
R_{-n}\left(u+s_{1} \tau+s_{2}\right)= & \prod_{i=0}^{N-1} P(u+i w) \nabla \otimes U_{s}^{-1} R_{-n}(u) \rrbracket \otimes U_{s} \tag{18a}\\
= & \prod_{i=0}^{N-1} P(u+i w) I_{s} \otimes \nabla R_{-n}(u) I_{s}^{-1} \otimes \mathbb{V} \tag{18b}\\
U_{s}=I_{s} \otimes \ldots \otimes I_{s} & \left(n I_{s}\right) .
\end{align*}
$$

Since the representation A_{b}^{-n} is the 1×1 matrix, the operator $\mathbb{\otimes} \otimes U_{s}$ commutes with $R_{-n}(u)$. Therefore the transformation (18) gives

$$
\begin{equation*}
R_{-n}(u)=I_{s} \otimes \eta R_{-n}(u) I_{s}^{-1} \otimes 0 \tag{19}
\end{equation*}
$$

Moreover, because we have $i+j=i^{\prime}+j^{\prime} \bmod n$ for $S(u)_{i j}^{i^{\prime \prime}}$ and A_{b}^{-n} is a 1×1 matrix, $R_{-n}(u)$ is a $n \times n$ diagonal matrix. Combining this and (19) we know that $R_{-n}(u)$ must be product of something and a unit matrix. Thus (17) gives

$$
\left[R_{\sigma N}^{13}(u+v), D_{\sigma N}^{23}(v)\right]=0
$$

Using (10), (12) and

$$
\operatorname{Tr} I_{a} I_{b}^{-1}=n \delta_{a b}
$$

we have

$$
\begin{equation*}
\left[A_{b}^{\sigma N}, D_{\sigma N}(v)\right]=0 \quad \text { for any } b \in \mathbb{Z}_{n}+\mathbb{Z}_{n} \tag{20}
\end{equation*}
$$

This commutation relation shows that the operator function $D_{\sigma N}(u)$ for any complex variable u is the centre element of the representation $\operatorname{rep}(\sigma, N)$ of the generalised Sklyanin algebra.

5. A brief discussion

In the previous section we have constructed the finite-dimensional representations and the centre of the generalised Sklyanin algebra. In fact, we have also found the fusion solution $R_{\sigma N}(u)$, which can be obtained by equations (10)-(12) and (14). But there are still some related interesting questions to be studied.
(i) Is the representation (14), taking the special values of w as a restricted sos model [33], reducible?
(ii) How many centre elements are there in the generalised Sklyanin algebra?
(iii) Can we construct the representations with the other symmetries for the generalised Sklyanin algebra?

These, however, have not been studied in this paper, but will be the subject of our future study.

Acknowledgment

This work was supported in part by the science fund of the Chinese Academy of Science through the mathematical institute of Nankai University.

Reference

[1] Yang C N 1967 Phys. Rev. Lett. 191312
[2] Baxter R J 1972 Ann. Phys., NY 70193
[3] Faddeev L D 1981 Sov. Rev. Math. Phys. 1107
[4] Baxter R J 1982 Exactly Solvable Models in Statistical Mechanics (New York: Academic)
[5] Thacker H B 1981 Rev. Mod. Phys. 53253
[6] Homnerkamp J, Weber P and Wiesler A 1979 Nucl. Phys. B 152266
[7] Takhtadzhan L A and Faddeev L D 1979 Russ. Math. Surveys 3411
[8] Hou B Y, Yan M L and Zhou Y K 1989 Nucl. Phys. B 324715
[9] Truong T T and Schotte K D 1983 Nucl. Phys. B 22077
[10] Pu F C and Zhao B H 1986 Nucl. Phys. B 27577
[11] Zhou Y K 1989 Nucl. Phys. B 326775
[12] Tsvelick A M and Wiegmann P B 1983 Adv. Phys. 32456
[13] Truong T T and Peschel 11989 Z. Phys. B 75119
[14] Olmedilla E and Wadati M 1988 Phys. Rev. Lett. 60 1595; 1987 J. Phys. Soc. Japan 564274
[15] Hewson A C, Rasul J W and Newns D M 1983 Phys. Lett. 93A 311
[16] Hewson A C, Rasul J W and Newns D M 1983 Solid State Commun. 4759
[17] Sklyanin E K 1982 Funct. Anal. Appl. 16263
[18] Sklyanin E K 1983 Funct. Anal. Appl. 17273
[19] Kulish P P and Reshetikhin N Yu 1983 J. Sov. Math. 232435
[20] Jimbo M 1986 Lecture Notes in Physics vol 246 (Berlin: Springer) p 355
[21] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1987 Quantization of Lie groups and Lie algebras Preprint LOMI
[22] De Vega H J 1987 Preprint LPTHE 87-54
[23] Wadati M and Akutsu Y 1988 Prog. Theor. Phys. 941
[24] Kohno T 1987 Ann. Inst. Fourier, Grenoble 37139
[25] Turaev V 1988 Invent. Math. 92527
[26] Jones V F R 1987 On knot invariants related to some statistical mechanics models Preprint
[27] Kulish P P, Reshetikhin N Ye and Sklyanin E K 1981 Lett. Math. Phys. 5393
[28] Cherednik I V 1985 Funct. Anal. Appl. 1977
[29] Belavin A A 1981 Nucl. Phys. B 180189
[30] Wei H and Hou B Y 1989 J. Math. Phys. 302750
[31] Richey M P and Tracy C A 1986 J. Stat. Phys. 42311
[32] Zhou Y K, Yan M L and Hou B Y 1989 Phys. Lett. A 133391
[33] Date E, Jimbo M, Miwa T and Okado M 1986 Lett. Math. Phys. 12209
[34] Jimbo M, Miwa T and Okado M 1987 Preprint RIMS- 592
[35] Zhou Y K and Hou B Y 1989 J. Phys. A: Math. Gen. 225089
[36] Mumford D 1983 Tata Lectures on Theta 1 (Basle: Birkhauser)
[37] Cherednik I V 1982 Sov. I. Nucl. Phys. 36320

